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|||.|- Goals of Talk

e Motivate need for wireless underwater
communication research

* Introduce difficulties of underwater acoustic
communications

* Discuss current methods for handling
underwater channel
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I|I|| Introduction and Motivation

e Ocean covers over 70% of planet
* 11,000 meters at deepest point

* Ocean 1s 3-dimensional

e Only 2-3% explored
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N N
III 1 Communications in the ocean

* |Instruments / Sensor networks

e Gliders

e Manned Vehicles

* Unmanned underwater vehicles (UUV)

— Autonomous underwater vehicles (AUV)
— Remotely operated vehicles (ROV)
— Hybrid underwater vehicles (H-AUV / H-ROV)
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Ill.l- Current Applications

* Science
— Geological / bathymetric surveys
— Underwater archeology
— Ocean current measurement
— Deep ocean exploration

* Government
— Fish population management
— Costal inspection
— Harbor safety

* |ndustry
— Qil field discovery/maintenance

WHOlI, 2005
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I|I-I— Applications planned /

in development
* Ocean observation system

— Costal observation
 Military

— Submarine communications (covert)
— Ship inspection

Networking

— Mobile sensor networks (DARPA)

* Vehicle deployment

— Multiple vehicles deployed simultaneously
— Resource sharing among vehicles

December 10, 2009
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Technology for communication

Radio Frequency (¥1m range)
— Absorbed by seawater

Light (~100m range)
— Hard to aim/control

— High attenuation except for blue/green
— Strong dependence on water clarity

Ultra Low Frequency (~100 km)
— Massive antennas (miles long)

— Very narrowband (~50 Hz)

— Not practical outside of navy

e (Cable

— Expensive/hard to deploy maintain

— Impractical for mobile work sites

— Ocean is too large to run cables everywhere
— Can’t run more than one cable from a ship

December 10, 2009 Ballard Blair
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* Fairly low power
— ~10-100W Tx
— ~100 mW Rx

The Solution: Acoustics

Well studied
— Cold war military funding

Compact

WHOI Micromodem
— Small amount of hardware needed

Current Best Solution

December 10, 2009
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WHOI Micromodem

Daughter Card / Co-processor

December 10, 2009

DSP

Transmit
Power

Receive
Power

Data Rate

Power Amp

Micromodem in action

Micromodem Specifications

Texas Instruments TMS320C5416
100MHz low-power fixed point processor

10 Watts
Typical match to single omni-directional ceramic
transducer.

80 milliwatts
While detecting or decoding an low rate FSK packet.

80-5400 bps
5 packet types supported. Data rates higher than 80bps
FSK require additional co-processor card to be received.
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Underwater Technology

~ Axial Sg'amount’fr‘.‘etworks‘and Sensors
’ F v’ > 0

NEPTUNE Regional Observatory b . ‘ ‘
WHOI, 2006 a2
December 10, 2009 Ballard Blair

11

/)\
Vo1,



I i|- Example Communication System?

tq@% UUV nose
section

Iridium satellite
radio links

Over-the-horizo Shioboard
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e Node-to-multinode com/nav

PLUSnet/Seaweb
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* Speed of sound ~ 1500 m/s

* Speed of light ~ 3x10% m/s
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Shadow Zones
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|||i|- Ambient Noise and Attenuation

e Ambient noise
— Passing ships, storms, breaking waves, seismic events, wildlife

Region Region Region Shear & Volume
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Delay (msec)
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Ill.l- Path loss and Absorption
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e Absorption ~ a(f)”"
— Thorp’s formula (for sea water):

2 2
10loga(f)=0.11 / - +44 A —~+0.000275 f* +0.003 (dB/km)
1+ f 4100+ f
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Ilrl- Long Range Bandwidth

SNR(f) =171+10log(P) - r a( f) - 20log(h/2) - 10log(r — h/2) —10log
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* Frequency curtain effect

— Form of covert communications

Figure courtesy of:
Costas Pelekanakis, Milica Stojanovic

— Might help with network routing
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IIIII- Latency and Power

* Propagation of sound slower than light
— Feedback might take several second
— Feedback must not be too time sensitive

O 1.5 km => 2 second round trip '

* Most underwater nodes battery powered
— Communications Tx power (~10-100W)
— Retransmissions costly



Illil- Shallow Water Multipath
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I|I-I— Acoustic Focusing by Surface
Waves

3'15“ime—Varying Channel Impulse Response | 2Dynarnics of the first surface scattered arrival
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|- Doppler Shifting / Spreading

a = v/c
g(t)
DAfQ
: f, f
o - 5 £
T B
B=Kaf —
g(t+at-1)
f
‘(l""})’—l l : £ F, (1)
! L1 ! f
77(?’«) < B(1+a) ” Fig. 9. Motion-induced Doppler shift is not uniform in a wideband system.

Fig. 8. Motion causes changes in the signal duration and frequency. The
Doppler factor @ = wv/c in an acoustic channel can be several orders of

magnitude greater than in a radio channel. . .
&n & Stojanovic, 2008
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|||i|- Bulk Phase Removal A

A\
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yr(n) = di(n)Hy(n)e?% (™) 4 2 (n)
Ok(n + 1) = 0} (n) -+ Aa(n)27rfkT'

Doppler due to

—_— X platform motion RX
= PR
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v
Received PLL Channel Transmitted
Data (remove bulk | Est. / g Data estimate
phase) .
Equalizer
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I|I-I— Multipath and Time Variability
Implications vy

* Channel tracking and quality prediction is vital
— Equalizer necessary and complex

* Coding and interleaving

* Network message routing can be challenging

December 10, 2009 Ballard Blair 25



|||i|- Channel Model @

Baseband
noise

Transmitted \

Data \ . v[n]
d[n] : Z g"[n, kld[n — k] u[n]

/ .

Baseband
Received Data

Time-varying, linear
baseband channel

Matrix-vector Form:

Split Channel Convolution Matrix

aln] = Gnld[n] + vin] = Gay[nldas 2] + Golnldo[n] + v{n]

December 10, 2009 Ballard Blair
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|||i|- Time-domain Channel Estimation

o
Vo1,

LMMSE Optimization:  &ops[n] = arg min E{|g"? [n]d[n] — u[n]|*}
gl

,\ B N\
Solution: Zopt = Ra :

Fdu

R4 = E{d[n]d" [n]}
rauw = E{d[n|u*[n]}
\§

Block Diagram:

v
(noise)

d g U(RX Data)
(TX Data) (channel)

£
channe

est. error) A} (RX Data

-~

g estimate)
! (channel

estimate)

December 10, 2009
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Time-domain Equalization

TX Data bit (linear) estimator: d[n] = h'![n]z[n]

h'

z — d|?}

Solution:  hopt[n] = Ry~ [n]ral)

R.[n] = E{zz

)] h
"}

\ 'ysd = ]Z{Z([‘k } j
Block Diagram (direct adaptation): (no‘ige)
h d (TX Data)
u—e>» . —>@—+
(RX Data)| [(equalizer)
£
(equalize
est. error) (/i\ (TX Data
h estimate)
L »|(equalizer
estimate)
December 10, 2009 Ballard Blair

AR Vector of RX data and TX data estimates
° . ° \ : : \ H
LMMSE Optimization: h,,¢ = argmin E{|h
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II}ilI" Decision Feedback Equalizer (DFE) /7‘

1930

Ilopt. — argmin E{|h” z — d|?}

* Problem Setup: %
* Estimate using RX data and TX data estimates

zln] = [u.:n —Le+1] ... uln] ... uln+ L. (Z[/) —1] ... (?['n —Lfb]]T
* DFE Eq: [(Z:n] = fli)t[n]z[n] = hiun] + hfl—ll)afb]

Solution to
Weiner-Hopf Eq.

* Two Parts:

.

R,[n] = E{zz"}
ry,d = E{Z([* }

4 hopt [“] _ Rz—l [ll]l‘zd [”q MMSE Sol. Using Channel Model

hg = [GoGo+ Ry] 'go
ha, = —Gmhg

— (Linear) feed-forward filter (of RX data)
— (Linear) feedback filter (of data estimates)

December 10, 2009
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DFE Strategies

Equalizer Tap Solution:

/)\
Vo1,

hg
hg,

|

(E[zz"]) " E[zd"]

(

l[GoGo + Ry] 1go

—Gahg

ol [n)]) [

|

Direct v
. ) (noise) (Soft data
Adaptation: o ostimate)
u .
d : Bit ¢ »d
(TX Data)| | (channel) (RX Data) feedﬂfl‘t’:sard Decision | | (Hard data
estimate
(a) (TX Data, € [ (soft decision )
d training) error)
g (f :t:b k
q " .| (feedbac
(Hard data > ﬁlter) /hopt
estimate)
Channel Estimate
. (noise)
u (RX Data) estimate) : A
d—e>» 9 hee Bit ¢ »d
(TX Data) (channel) (feedforward Decision | | (Hard data
(channal filter) estimate)
(T dt yest. error) Ay (RX Data =
ala, = estimate
(b) d training) g _ ) - (feedbﬂ;ck
(channel g
3 : filter)
estimate)
(Hard data
estimate)
December 10, 2009 Ballard Blair
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|||.|- Question:

Why is the performance of a channel estimate
based equalizer different than a direct
adaptation equalizer?

December 10, 2009 Ballard Blair 31



|||.|- Comparison between DA and CEB

* |n the past, CEB methods empirically shown to
nave lower mean squared error at high SNR
* Reasons for difference varied:

— Condition number of correlation matrix

— Num. of samples required to get good estimate

SDE Equalizer Comparison on a S-tap Rayleigh Fading Channel
T T T T T T T I I

)
; | —— D
) oo VS SO OO S SRS S S |—e—ces |
.. —'—_Optimal
Slmllar g‘ B Ut SR SOPPObbvs e S SO S 3dB performance
performance VY RN RN OIS . . S SIS SO SN SN ST difference between CEB
et : .
at low SNR 5 and DA at high SNR
= .
g af
& . ?
2 25t ; » .
. / Performance gap due
-30 |- : . f . .
N to channel estimation
3 S 10 15 20 25 3I0 35 410 4I5 S0

December 10, 2009
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H N f&wo‘i?%@a
III I Comparison between DA and CEB /
* Our analysis shows the answer is:

Longer corr. time for channel coefficients than
MMSE equalizer coefficients at high SNR

* Will examine low SNR and high SNR regimes

— Use simulation to show transition of correlation
time for the equalizer coefficients from low to high
is smooth



|||i|- Correlation over SNR — 1-tap

Chan. Corr.
= = = Eq. Corr., —10 dB||
+== = Eq. Corr., 0 dB
------- Eq. Corr., 10dB
| = = = Eq. Corr., 20 dB
‘- Eq. Corr., 30 dB
*| vsensnn Eq. Corr., 40 dB [
= = = Eq. Corr., 50 dB
+== = Eq. Corr., 60 dB

06f--mrmmmririin

AR(1)
model

Correlation Coefficient

s Chian. Corr.
= = = Eq.Corr., -10 dBH
=m0 Eq. Corr, 0dB
veienis Eq. Corr, 10dB
= = = Eq.Corr, 20 dB

1= Eq. Corr., 30 dB
v Eq. Corr., 40 dB
= = = Eq.Corr., 50 dB
e m o Eq. Corr, 60 dB ]
v Eq. Corr, 70 dB

Gaussian
model

Correlation Coefficient

Delay (samples)
December 10, zuus allard Blair

w1 Eq. Corr., 70 dB /

Channel and
Equalizer Coeff.
Correlation the
Same at low SNR

Equalizer Coeff.
Correlation
reduces as SNR
increases
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Ill.l- Take-home Message

* Channel impulse-response taps have longer
correlation time than MMSE equalizer taps

— DA has greater MSE than CEB

* For time-invariant statistics, CEB and DA
algorithms have similar performance
— Low-SNR regime (assuming stationary noise)

— Underwater channel operates in low SNR regime
(<35dB)




|||.|- Question:

How does the structure of the observed noise
correlation matrix affect equalization
performance?
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|||.|- Recall DFE Equations (again) /A\

4’011 nLl LS\\\\

o A ~ H A
DFE Eq . [ d[n] = h, i [n]z[n] = hZun] + hg)dfb]
Solution to 4 hopt [“] _ Rz—l [N]l‘zd [,”] MMSE Sol. Using Channel Model
Weiner-Hopf Eq. Rz[“] _ E{ZZH} hg = [GOGO +Rv]_1go
'zd = E{Z([*} hfb e _Gfbhﬂ‘

.

 Vector of data RX data and TX data est.
zln] = [u\[n — Le+ 1] ... uln] ... uln+ L], (’i[‘li —1] ... (Z['n — Lfb]]T

e Assumed noise covariance form:

R, =pl
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N - ST
III i Updated Equalizer Equations /ﬁ\

* Channel Estimation Model: Ginl=G[n]+T[n]

o Effective Noise: wn] =T'[n]d[n] + v[n]

* New DFE Eq. Equations:

heln] = (GolnlGy [n] + Refn] + 05 Ryfn]) g,

hm[n] = —Gp[n]hg[n] (12)

e Effective Noise Term:

Ro = Rr([n] + 0, *Ry[n]

December 10, 2009 Ballard Blair 39
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|||i|- Effective Noise variance from data

* SPACEOS8 Experiment

— Estimate of top-left element of R,

_.-...+.......-. ...............................................................................................

|
o)
(=]
v

Effective Noise Variance Estimate [dB)
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Illil- Comparison of Algorithms

 SPACEOS8 Data (training mode

)

10 F
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S —e—cEB
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Bit Error Rate

10 'k
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(a) Bit error rate (BER) results

—e—CEB ||
—w—DA |]
—&=— DIAG

Soft Decision Error [dB]

December 10, 2009

(b) Soft decision ergor, (SDE) results
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Ill.l- Take-home message

* Diagonal noise correlation matrix is not
sufficient for the underwater channel

* Need to track noise variance throughout
packet

* Noise statistics are slowly varying, so can
assume matrix is Toeplitz

— Reduces algorithmic complexity




|||.|- Direct Adaptation Equalization

Model Assumptions

* Does not require (or use) side information

* More computationally efficient
— O(N?) vs O(N3)
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|||.|- Future Directions and Ideas

 Methods to reduce degrees of freedom to be
estimated

— Sparsity (very active area right now)
— Physical Constraints

* Communication systems do not exist in a
vacuum underwater

— Usually on well instrumented platforms

— How can additional information be used to
improve communication?



Ill.l- Conclusions S

e Research in underwater communications is
still necessary and active

 The underwater channel is challenging

* Equalization
— Bulk phase removal through PLL
— DA equalization deserves another look

— Cannot assume diagonal noise correlation matrix



|||.|- Thanks!

Thanks to Prof. John Buck for inviting me today

For their time and comments:
* Jim Preisig
* Milica Stojanovic

Project funded by:
* The Office of Naval Research
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|||.|- Questions?
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Global Ocean Profile

SOFAR Channel
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|||.|- Multipath

* Micro-multipath due to rough surfaces
* Macro-multipath due to environment

(a) incidence wave i )
. 7 scattering wave

Sea surface

specular
(b) incidence wave

scattering wave

Tx

cid rough
s  incidence wave
©

scattering wave

<
==

seabed

December 10, 2009 Ballard Blair

50

/)\
Vo1,



|||.|- Speed of Sound Implications

e Vertical sound speed profile impacts
* the characteristics of the impulse response

* the amount and importance of surface scattering
e the amount of bottom interaction and loss

* the location and level of shadow zones

* Horizontal Speed of Sound impacts

* Nonlinearities in channel response

December 10, 2009 Ballard Blair
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|||.|- Shadow Zones

Tl e Clay and
Medwin,

“Acoustical

Oceanography”

c(z)

c(z)

(2)

2

(h)

 Sometimes there is no direct path (unscattered) propagation between two
points. All paths are either surface or bottom reflected or there are no paths.

* Problem with communications between two bottom mounted instruments in
upwardly refracting environment (cold weather shallow water, deep water).

* Problem with communications between two points close to the surface in a
down\)NardIy refracting environment (warm weather shallow water and deep
water).

December 10, 2009 Ballard Blair 52
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Illil- Propagation Paths
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Ocean Continental Continental
basin margin shelf

Arctic

Ocean bottom

Arctic D. Convergence zone
Surface duct E. Bottom bounce
C. Deep sound channel F. Shallow water

Schmidt, Computational Ocean Acoustics
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|||.|- Assumptions

Unit variance, white transmit data
E{d[n]d"[n]} =1

TX data and obs. noise are uncorrelated
E{V[n]dH[m]} =0

— Obs. Noise variance:

R, = E{v[n]vi[n]}
* Perfect data estimation (for feedback)
d=d

Equalizer Length = Estimated Channel Length
N,+N.=L +L
MMSE Equalizer Coefficients have form:

hg = [GUG{? —i—R.V]_lGS

hg, = -Gy hg

54
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Illil- WSSUS AR channel model

* Simple channel model to analyze
* Similar to encountered situations

gln+ 1] = ag[n] + w|n]

R, k] = E{g[n]g*[n + k]} = :

December 10, 2009 Ballard Blair 55



U DFE: Notes

 Same expected squared estimate error

E{léare]?} = AGAGY +R,
e Strong error dependence on FB channel offset

* Cross term of separated offset is not
necessarily diagonal AGoAGH

December 10, 2009 Ballard Blair 56



Ill.l- Acoustics Background

* Acoustic wave is compression wave traveling
through water medium

Wave Equation for Pressure

1 1 0%
PV'(;W‘?W“’

Wave Equation for Particle Velocity

2
—V(p(' V- V) oy

=0.
p ot?
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Time varying channel

Time variation is due to:
— Platform motion

— Internal waves

— Surface waves

* Effects of time variability U
— Doppler Shift fd = fC -

C
— Time dilation/compression of the received signal

Channel coherence times often << 1 second.

Channel quality can vary in < 1 second.

December 10, 2009 Ballard Blair
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Illil- Low SNR Regime

Update eqn. for feed-forward equalizer coefficients (AR model assumed):

hg[n+1] = (Goln +1)GH[n+ 1] + Ry)(go[n + 1])

~ Ry '(agy[n] + win])

~

_ ] / ~ oahg(n]+ Rv_lw[n] \ y
Approximation:

Has same correlation structure

[ Ry + G['n]GH['n] ~ Ry } as channel coefficients
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U High SNR

hg[n+1] = (Goln+1]Gi[n+ 1]+ Ry)(go[n + 1))

Approximation:

[ G, ['n.]GgI n] + Ry = GO[n]Gé{ [72.]J_>(G0[n] Gg n))hen] = go[n]
Matrix Prczduct: ] \

/Reduced_ChanneI Convolution Matrix:

gsln— L+ 1] 0 0 0 90]* -
giln—L+2] gjln—L+2] 0 - 0 Jogi -
Go= |gsln—L+3] giln—L+3] gln—L+3] -~ 0 | GG =|qg -

K | gt gi-1[n] gi-a[n] - golnl] EETN /

Reduces to single tap: [h[n.] _ [1/90 - O]T]
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|||i|- Amplitude

T e e T

N\ 20 dB

Amplitude [dB]

- AJ ........... I / ..... L

i i 1 i i i i i I i
35485 3549 35485 355 35505 3551 35515 3552 35525 3.553
%10

Sample Number
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of MMSE Eq. Coeff.

g del

difference

Sample Number

First feed-forward equalizer
coefficient has much larger
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Ill.l- Multi-tap correlation
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Il Form of observed noise correlation @4&

* Channel Estimation Model: Ginl=G[n]+T[n]

* Data Model: u[n] = G[n]d[n] +v[n] = G[n]d[n] +T'[n]d[n]+ v[n]

e Effective Noise: win] =T[n]d[n]+ v[n]

 Effective Noise Correlation:

Rw([n] = E{w[n]w[n|}
= E{(T[n]d[n] + v[n])(T[n]d[n] + v[n])}
= E{T[n]d[n]d” [n]TH[n]} + Ry[n]
= E{T[n|E{d[n]d” [n]|T[n]}TH[n]} + R,
Rw[n] = o32Rr[n]+ Ry[n] (11)
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I|I-I— Algorithm to estimate N
effective noise L

e Calculate estimate of the effective noise:

é[n] = uln] — G[n]d[n] )
é[n] = G[n]d[n]+Vv[n]—-G[n]d[n| = '[n|d[n|+v[n]

* Assume noise statistics slowly varying and
calculate correlation of estimate noise vec.

L—1—i
1

Yi[n| = (7 - Z e[n+i+jle’[n+j], 1=0,...,L—1

j=0

* RLS Update: Ro.qln] =Zx\v-z-[k]
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Ill.l- Additional Question:

How does channel length estimation effect
equalization performance?
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Illil- Recall DFE Equations

o | 4. ~ H A
* DFE EQ:| dn] = finy, nlzln] = hifuln] + hfda, |
Solution to 4 hopt. [“] _ Rz—l [‘N]I‘zd [,”] MMSE Sol. Using Channel Model
Weiner-Hopf Eq. R,[n] = E{ZZH} hg = [GoGy +Rv]_1go
\ 'zd = E{Z(]*} hfb e _Gfbhff

 Vector of data RX data and TX data est.
zln] = [uy[n — Le+ 1] ... uln] ... uln+ L], ([',[n —1] ... (Z['n\ — Lfb]]T

° Cost Function: liopt, = arg min E{|th — d|?}
h'
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Channel Length Mismatch

e Model: True channel is estimate + offset

G=G+AG

 Example: Static Channel

— True Channel length =3
— Est. Channel Length =2

December 10, 2009

glU 0

g[t]  g[0]
0 0 0

gl2] 0 0
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G:=E €r+AG
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DFE: Channel Estimation Errors

hg = llﬁ‘ + ohg
Split opt. DFE into estimate plus offset: : .
hg, = hs +0ha

Form of equalizer (from estimated channel):

hi = [GoGl — GoAGH — AGGH — AGAGH + R 'g,

hysp = —(Gp— AGyp)(hypf — dhff)

~

/Form of equalizer offset:

dhyp = QHI-W'QHTIWQ g,
(Shfb = AGfb(_hff) - Gfb(shff

Q, — [GOG{){ "'RV]
W' = GoAG + AG Gl + AGOAG{-}’/

-
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|||.|- DFE: Mean squared error analysis

Py

1930

DS
@OO Ho(€

Estimated DFE error:  ¢qfe = hypu+ hyppdygy

Estimated expected squared error: E{|éqs|?} = El{'lllffll + lif-bélfb —d|?}

Estimated expected squared error (Channel Form):

. .- ‘ ~ H ‘ . .
E{l"dfe|2} o ﬁg.dfe + hff(AGfbAG?b)hff —+ (511?1-[G0Gé{ + Rv]_lf)hff

/ Estimated expected squared error (Excess Error Form):

\
E{léar]*} =

‘ ~H ~
O ape T 0y (AGRAGH hyy +hg W - WQ QI - WQ™'Whg

\ ~

\ MAE Excess Error
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Ill ] DFE: Offset Est. and Compensation

1. Estimate error vector (same as for LE)

€afe = Gd—u

2. Outer product w/ extended data vector
E{cared™) = AG’

3. Subtract estimated channel offset

~ /
€dfe

€Edfe — AG,(II

4. Split Estimated Channel offset into FB and other
‘ <AGO
AG' AG”,
5. Plug values into equalizer equatlon
hff [(_.lfe dfe

H 1 GoAGH + AGLGh + AGHLAGH + GGl lg

h b —[Gfb + AGfb]th f

December 10, 2009 Ballard Blair
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Soft Decision Error (SDE) [dB]

December 10, 2009

Simulation:

DFE Time-Invariant Channel

BER Egualizer Comparison on a time-invariant 7-tap channel
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..................................................................

Simulation Parameters:
*True Channel Length =7
*Est. Channel Length =6
*Equalizer = DFE

Lg, =5

SDE Equalizer Comparison on a time—-invariant 7-tap channel

SNR

Ballard Blair
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Simulation Parameters
*True Channel Length =

4

*Est. Channel Length = 3

*Equalizer = DFE
*Coherence time = 1s

BER

-2
an~<

SDE Equalizer Comparison on a 4-tap Rayleigh Fading Channel

Simulation:

DFE Rayleigh Fading Channel
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BER Equalizer Comparison on a 4-tap Rayleigh Fading channel
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= [irect Adaptation
.| ==@m= Channel Est., Error Estimated

|| e Channel Est., Bias Compensated
:| === Channel Est., Regularized

‘| 1w w1 Perfect Channel Knowledge

SNR

Due to uncompensated
channel motion “noise”

\Performance gap appears due
to channel time variability
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Experiment Signal Parameters: N\'/\/\A

* 12 kHz carrier

* 6510 ksym/s (~6 kHz bandwidth)
* BPSK encoding

* Used 1 receiving element (of 12)
* 39062.5 samples / second

4m

Channel Estimate for RACEDS Data Packet

Delay (ms)

4.8 5 52 54 5B 58 5 62 64 BB
Time (s)
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Experimental Setup: RACEOS8
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Testing Setup

: RACEOS

* Channel Est. Parameters:
N,=2,N.=6 I

e Equalizer = DFE T
[,=5,L.=3 ol

* Packet Length: T
25000 sym

* RLS Parameters: \J\
A=0.996 Cho WNe NN
N, = 1000 sym S0 e T

8 Samples
December 10, 200 sallard o ”



|||i|- Experimental Results: RACEOS

Direct Adaptation DFE = standard DA DFE ;
Chan. Est., Error Estimated DFE = Previous method TS LI S =¥ Ch Est. Bas conpensated OFE |
Chan Est., Biased Removed DFE = Proposed Method "

Soft Decision Error (dB)

SNR vs. BER equalizer comparison from RACEOQS data
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SNR vs. SDE equalizer (¥mparison from RACEOQS data
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Ill.l- Take-home Message

e Effect of channel length mismatch is proportional
to energy in channel that is not modeled

DA equalization does not suffer from bad channel
length information
— No way to include information in algorithm

* Can recover some of the lost energy adaptively



